

Low Resistance Tires Supporting Green Freight - Experiences from EU Tire Regulations, Standards and Labelling

China Green Freight Initiative Seminar (2014)

Christian HOCHFELD, Programme Director at GIZ

Driving Forces for the Development of Low Rolling Resistant tires

Energy Saving

How does Rolling Resistance contribute to Vehicle Fuel Consumption?

- The vehicle engine has to provide a force to compensate RR. This
 consumes some fuel and so contributes to the vehicle fuel
 consumption.
- Tires account for 20% to 30% of fuel consumption depending on vehicle speed (over 70km/h, aerodynamic drag exceeds rolling resistance as a parameter influencing consumption).
- For truck tires a 1kg/t variation in RR means on average a 5% saving.

Air Quality and PM Emission

Reduction of Nitrogen Dioxide Emission by improved Tires

In many EU cities the EU air quality standards for nitrogen dioxide are violated frequently.

By reducing the rolling resistance the nitrogen oxide and particle emissions will be reduced accordingly.

Rolling Noise

WHO and JRC: Burden of Disease from Environmental Noise

In the European Union Member States and other western European countries, DALYs (disability-adjusted life-years) estimated lost from environmental noise:

✓ Ischaemic heart disease : 61 000 years

✓ Cognitive impairment of children : 45 000 years

✓ Sleep disturbance : 903 000 years

✓ Tinnitus: 22 000 years

✓ Annoyance : 654 000 years

At least one million healthy life years are lost every year from traffic-related noise in the western part of Europe.

Source: WHO and EU JRC: Burden of disease from environmental noise 2011

Rolling Noise

Reported noise exposure > 55 dB Lden in European agglomerations with more than 250 000 inhabitants based on the results of strategic noise mapping.

Source: NOISE, 2010.

Noise source

Page 6

EU Tires Regulation

EU Tire Rolling Resistance Limits

	Max. Rolling Resistance (Kg/Tonne)		
Tire Category	Stage 1	Stage 2	
C 1	12	10.5	
C2	10.5	9	
C 3	8	6.5	

Legal Situation in Europe – C3 Tires

Legal situation of tires for commercial transport vehicles in Europe regarding type approval and sales

• Rolling resistance (Stage 1) •Rolling resistance (Table 1) • Rolling noise (2012 limits) Rolling noise • Expected: Wet grip (in legislation process) new tire types (tire type-approval) 2012/11 2016/11 Rolling noise •Rolling resistance (Stage 1) •Rolling resistance (Stage 2) (limits prior to 2012/11 • Rolling noise (2012 limits) Rolling noise acc. 2001/43/EC) tires for new type of vehicle (vehicle type-approval) 2013/11 2017/11 Rolling noise • Rolling resistance (Stage 2) (limits prior to 2012/11 •Rolling resistance (Stage 1) • Rolling noise (2012 limits) acc. 2001/43/EC) • Rolling noise (2012 limits) • expected: Wet grip (in legislation process) sale of new tires (type-approval prior to 2012/11) 2016/11 2020/11

Tire Labelling Regulation 1222/2009

Since November 2012 all new tires on sale in Europe are classified and labeled for fuel efficiency, wet grip

and rolling noise performance.

Fuel efficiency requirements for C3 tires in Europe (limit values for the Rolling Resistance Coefficient "RRC")

Fuel efficiency classes of C3 tires:

Today's limit value for new tire type approval

RRC in kg/t	Energy efficiency class
<i>RRC</i> ≤ 4,0	A
$4,1 \leq RRC \leq 5,0$	В
$5,1 \leq RRC \leq 6,0$	С
$6,1 \leq RRC \leq 7,0$	D
7,1 ≤ RRC ≤ 8,0	Е
$RRC \ge 8,1$	F
Empty	G

The difference between a F and an A class for a complete set of tires could reduce fuel consumption for trucks up to 15%

Possible Grading Scheme and End-User Benefits in 2012 per Set of 10 C3 tires (Winter and Summer, VAT excl., Fuel Tax incl.) for Moving from Band D to Higher Bands

	Α	В	С	D	E	F	G
RRC	below 4	4 to 5	5 to 6	6 to 7	7 to 8	above 8	/
Price premium	1080	650	310	0	/	/	/
Total fuel savings	3780	2520	1260	0	/	/	/
Payback period (months)	5	5	5	0	/	/	/
CO ₂ g/km savings	99	66	33	0	/	/	
Market share in 2004	1%	8%	23%	33%	23%	10%	/
In 2020 (slow pace)	11%	28%	43%	14%	3%	0%	/
In 2020 (fast pace)	39%	35%	21%	4%	1%	0%	/
Baseline scenario in 2020	3%	19%	51%	22%	6%	0%	/

Source: EPEC 2008.

For a fleet with 50 trucks a 4% fuel saving means:

200,000 km/year 35L/100 km RMB 7.60/L 509% {

RMB21,280 in fuel consumption costs can be saved annually.

RMB1,060,000 in fuel consumption costs can be saved annually.

Road Test

DAF XF 105.460

lschaft le t (GIZ) GmbH

Engine volume: 12.9

Power: 340 Kw

Gearbox: Automatic

Load: 40 t total mass

•3 axles

Source: Tire Benchmark Test 2010 TÜV SÜD

First Test

Brand Name	Tire Size
	Brand Name

MICHELIN	XZA 2 ENERGY /XDA 2+ ENERGY / XTA 2+	
MICHELIN	XZE 2+/ XDE 2+ / XTE 3	Lenkachse / Antriebsachse / Auflieger 315/80 R22.5 / 315/80 R22.5 / 385/65 R22.5
MICHELIN	X® ENERGY™ SAVERGREEN: XZ / XD / XT	

Second Test

Manufacture	Brand Name	Tire Size
-------------	------------	-----------

MICHELIN	X® ENERGY™ SAVERGREEN: XZ / XD / XT	
CONTINENTAL	ECO-PLUS: HSL2 / HDL 2 / HTL 2	
PIRELLI	Amaranto ENERGY: FH88 / Amaranto ENERGY TH88 / ST35	Lenkachse / Antriebsachse / Auflieger 315/80 R22.5 / 315/80 R22.5 / 385/65 R22.5
GOODYEAR	Marathon: LHS II / LHD II / LHT E	
BRIDGESTONE	R249 / M749 / R168	

Source: Tire Benchmark Test 2010 TÜV SÜD

Results of the Tests

First Test

MICHELIN X® ENERGY™ SAVERGREEN: XZ / XD / XT	MICHELIN XZA 2 ENERGY /XDA 2+ ENERGY / XTA 2+	MICHELIN XZE 2+/ XDE 2+ / XTE 3	
-0.67 [l/100km]	0.0 [l/100km]	+2.00 [l/100km]	
/ -2.7%	/ 0.0%	/ +7.9%	

Second Test

MICHELIN X® ENERGY™ SAVERGREEN: XZ / XD / XT	CONTINENTAL ECO-PLUS: HSL2 / HDL 2 / HTL 2	GOODYEAR MARATHON: LHS II / LHD II / LHT E	PIRELLI AMARANTO ENERGY: FH88 / AMARANTO ENERGY TH88 / ST35	BRIDGESTONE R249 / M749 / R168
0.0 [l/100km]	+0.67 [l/100km]	+1.61 [l/100km]	+2.19 [l/100km]	+2.44 [l/100km]
/ 0.0%	+2.8%	/ +6.7%	/ +9.2%	/ +10.2%

Source: Tire Benchmark Test 2010 TÜV SÜD

The label has had an impact on many stakeholders

MANUFACTURERS/IMPORTERS

- Technological challenge: Accelerate progress on raw material and technology to improve quality of tires
- Business &reputation challenge, derived from increased market transparency
- Compliance challenge and fair level playing field: it is costly, in particular when the same performances maybe regulated with different technical prescriptions (test methods, markings,...)

DEALERS

 Provides tire dealers with strong new selling arguments to ensure consumers make a better informed choice

The label has had an impact on many stakeholders

CONSUMERS

 Gives consumers more comparable information (other than price and brand) to help make a better purchasing decision

EU and NATIONAL LEGISLATORS

 Gives Authorities an opportunity to highlight the social benefits that can be achieved through with the right tire choice. Increased integration of tire environmental criteria in public tenders

MEDIA and PUBLIC

 Raises awareness on the significant influence tires have on a vehicle's safety and environmental performance

Useful information on Fuel Efficiency of tires

Tire Pressure Monitoring System

Thank you very much for your attention!

>> Contact Details contracts:

Deutsche Gesellschaft für Internationale Zusammenrbeit (GIZ) GmbH

Christian Hochfeld

p: +86-10-85275589 Ext.: 401

f: +86-10-85275591

e: christian.hochfeld@giz.de