

如何利用模型计算交通排放

中国道路交通排放模型及其应用 China Road Transport Emission Model(HBFEA Expert Version)

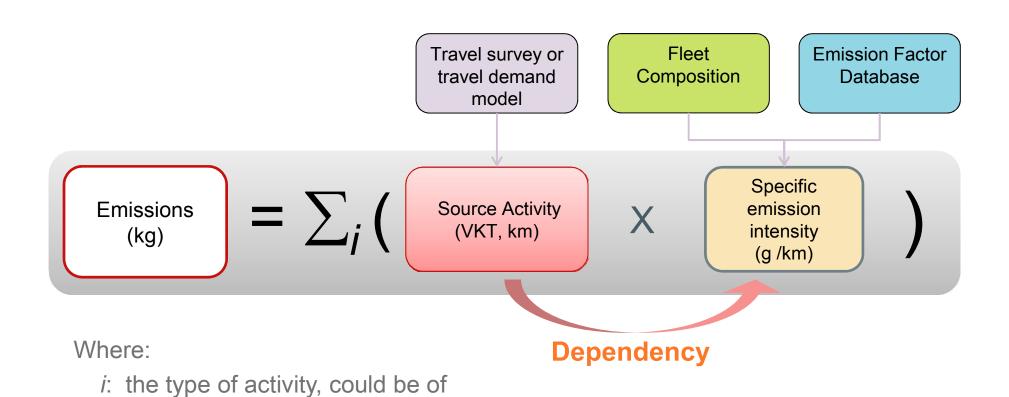
孙胜阳 可持续交通项目,德国国际合作机构(GIZ)

November 2014

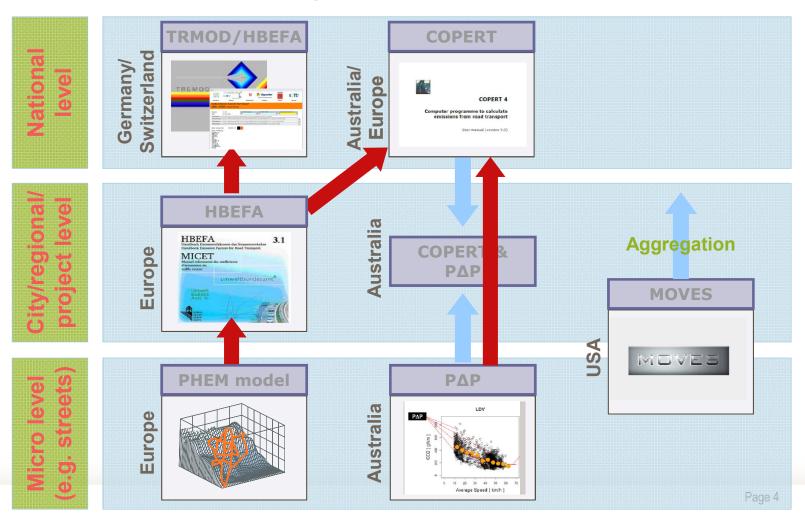
可持续交通在中国 SUSTAINABLE TRANSPORT IN CHINA

大纲Outline

■ 欧洲道路交通排放因子手册 Handbook of Emission Factors in Road Transport(HBEFA)


■ HBEFA本地化技术思路 Approach to adapt HBEFA to China

交通排放计算工具 Emission quantification tool - software package


交通排放计算的基本公式

multiple dimension

交通排放计算工具Classification of different emission models used in Europe, Australia and USA

欧洲道路交通排放因子手册(HBEFA)

- HBEFA是由欧洲的数个国家联合开发的, 包括德国、瑞士、奥地利、瑞典、挪威、 法国等
- 1995年发布了第一版,此后在持续更新和 完善,目前3.2版本
- HBEFA提供车辆热运行、冷启动和蒸发排放过程的排放因子。包括污染物排放因子、燃油消耗和二氧化碳排放因子等

HBEFA: Emission factors for different vehicle subsegments

Vehicle categories	Vehicle size	Fuel types	Emission Standards	Reduction technologies
Passenger Car	PC < 1.4 L	Gasoline	Pre Euro 1	Particle filter
Motorcycle	PC 1.4-2.0 L	Diesel	Euro 1	SCR
Urban bus	PC > 2.0 L	LPG	Euro 2	EGR
Coaches	Truck ≤ 7.5 t	CNG	Euro 3	
Light duty veh.	Truck 7.5-12 t	FFV	Euro 4	
Single truck	Truck 12-14 t		Euro 5	
Truck trailer ¹⁾	11uck 12-14 (Euro 6	

Abbreviations: PC = Passenger car; LPG = Liquefied Petroleum Gas; CNG = Compressed Natural Gas; FFV = Flexible Fuel Vehicles; SCR = Selective Catalytic Reduction; EGR = Exhaust Gas Recirculation

¹⁾ Including articulated vehicles.

HBEFA排放因子与交通运行工况关系密切

traffic situations of HBEFA are categorised by:

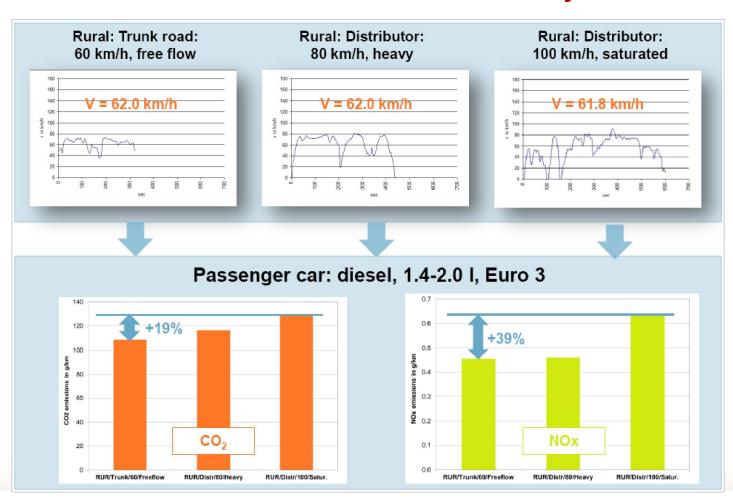
areas: urban/rural

road types: e.g. motorway, trunk road

speed limits: e.g. 50 km/h

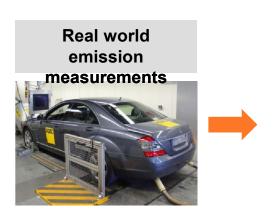
levels of services: free flow, heavy traffic, saturated, stop 8 Motorway (130 km/h) free flowing traffic

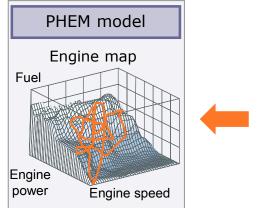
276 different traffic situations (more than 120 for urban areas)

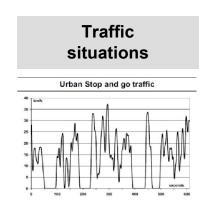

			Spee	d Lim	it [km	/h]								
Area	Road type	Levels of service	30	40	50	60	70	80	90	100	110	120	130	>13
Rural	Motorway-Nat.	4 levels of service												
	Semi-Motorway	4 levels of service												
	TrunkRoad/Primary-Nat.	4 levels of service												
	Distributor/Secondary	4 levels of service												
	Distributor/Secondary(sinuous)	4 levels of service												
	Local/Collector	4 levels of service												
	Local/Collector(sinuous)	4 levels of service												
	Access-residential	4 levels of service												
Urban	Motorway-Nat.	4 levels of service												
	Motorway-City	4 levels of service												
	TrunkRoad/Primary-Nat.	4 levels of service												
	TrunkRoad/Primary-City	4 levels of service												
	Distributor/Secondary	4 levels of service												
	Local/Collector	4 levels of service												
	Access-residential	4 levels of service												

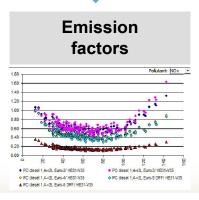
100 min 100 mi	motorway (100 killin) nee nowing traine	motorway (120 K
66 46 20 408 606 800 1008 1220 1860 Urban (50 km/h) free flowing traffic Urban Sto	160	90 kmhh 70 00
26	60 ————	40
Urban (50 km/h) free flowing traffic Urban Sto	0 seconds	10
35 35 35 35 35 35 35 35 35 35 35 35 35 3		Urban Sto
	300000000000000000000000000000000000000	55 30 25 25

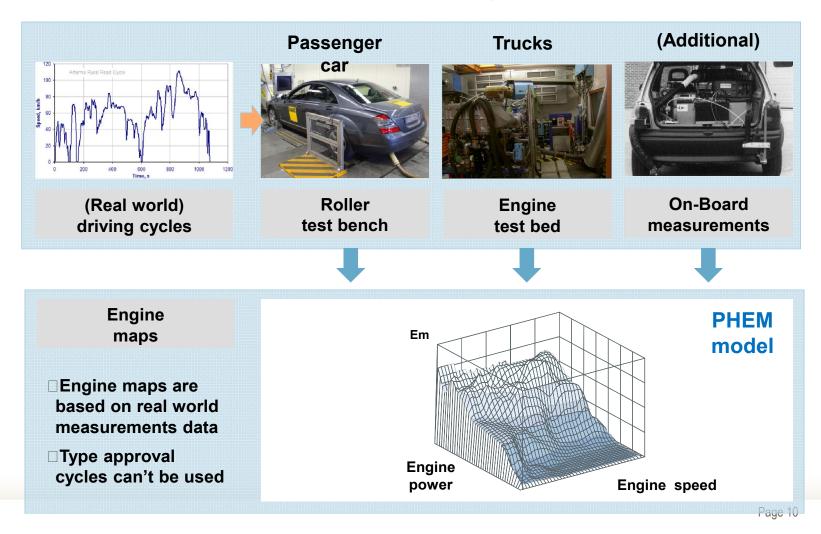
Page 7




Emission factors only based on average speed are not sufficient for detailed analyses



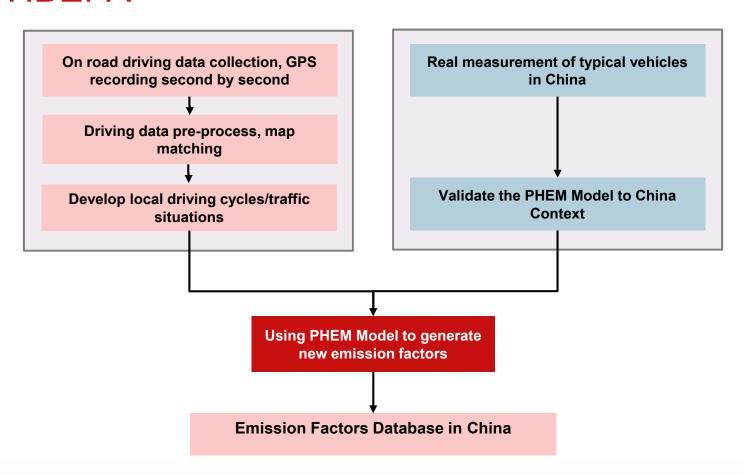

HBEFA approach: Calculation of emission factors for all traffic situations using the PHEM model



- approach is also feasible for other countries
- existing engine maps
 (particularly for CO2) can be used for the calculation of emission factors based on local traffic situations

PHEM模型 (Passenger car and Heavy duty Emission Model) in detail

大纲Outline


 欧洲道路交通排放因子手册 Handbook of Emission Factors in Road Transport(HBEFA)

■ HBEFA本地化技术思路 Approach to adapt HBEFA to China

■ 交通排放计算工具 Emission quantification tool - software package

HBEFA本地化的技术思路Approach to Localize HBEFA

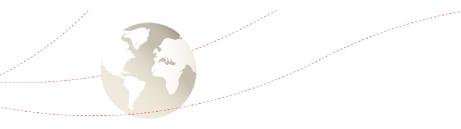
Specification of Traffic Situations in China

Considering the on road traffic conditions and network performance in Beijing, traffic situations was specified as:

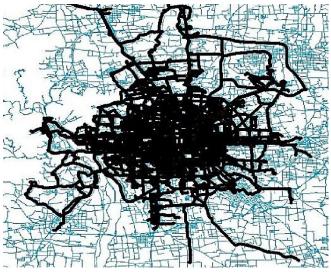
- 5 road type: Highway, Expressway, Major Arterial, Minor Arterial, and Branch Road
- Speed limit for each road type
- 5 Level of Service (comparing to 4 LOS in HBEFA)

Level of service	LOS 1: Free flow	LOS 2: Saturated traffic	LOS 3: Heavy traffic	LOS 4: Stop and go	LOS 5: Heavy stop and go
Congestion level	Unimpeded	Basically Unimpeded	Mild congestion	Moderate congestion	Severe congestion
Unit	km/h	km/h	km/h	km/h	km/h
Highway/Expressway	>55	40-55	30-40	20-30	≤20
Major arterial	>44	30-40	20-30	15-20	≤15
Minor arterial	>35	25-35	15-25	10-15	≤10
Branch	>35	25-35	15-25	10-15	≤10

机动车行驶数据采集On Road Driving Data Collection

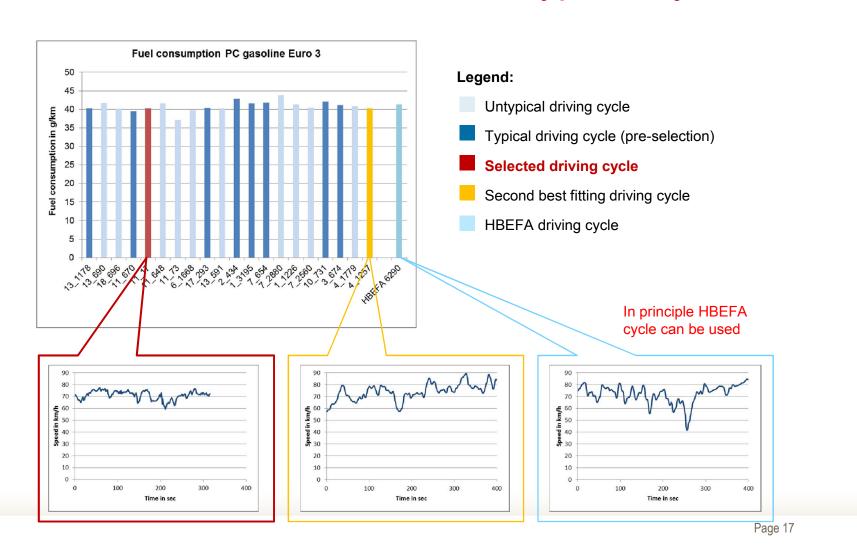

- GPS transmitters were applied to record real road vehicle movements.
- Measurements are made second by second (1 Hz)
- GPS data was collected in both Beijing and Shenzhen with a total of more than 2000 hours of driving data

GPS receiver



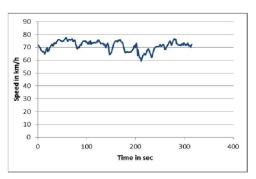
地图匹配 Map Matching to identify road type

Beijing TRC floating car system was applied as a tool to conduct map matching

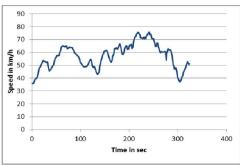

Descriptive statistical driving cycle data

	Cell	D: a4(1,120)	T (10 // // // // // // // // // // // // //	Average weighted by distance					
	count	Dist(km)	Total time(h)	Speed (km/h)	RPA (m/s²)	Stop time (%)			
Branch	1436	1804.30	138.52	21.41	0.17	25.7%			
Expressway	1631	5916.15	170.78	45.43	0.14	4.9%			
Expressway sideroad	1132	2083.92	92.18	31.68	0.17	16.8%			
Highway	559	2683.08	75.59	54.18	0.13	9.4%			
Major Arterial	1997	3919.51	202.59	28.14	0.19	33.3%			
Minor Arterial	1836	2787.30	169.23	21.68	0.19	29.4%			
National Highway	25	55.26	2.24	25.54	0.19	27.4%			
Provincial Highway	26	73.60	2.54	35.16	0.17	19.6%			
sideroad	180	201.20	14.01	20.26	0.20	37.4%			
SUM	8822	19524.32	867.68						

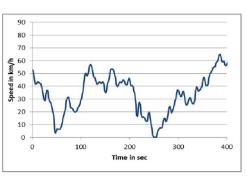
Identification and Selection of Typical Cycles

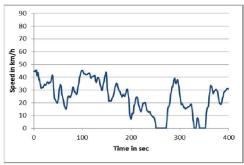


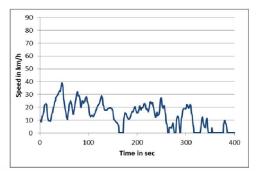
Selection of Chinese specific traffic situations - *Expressway/Highway*


Key parameters:

	Average speed	RPA	% stop time
	km/h	m/s3	%
LOS 1	71.2	0.09	0%
LOS 2	57.3	0.11	0%
LOS 3	42.3	0.13	1%
LOS 4	25.8	0.17	7%
LOS 5	12.0	0.17	26%

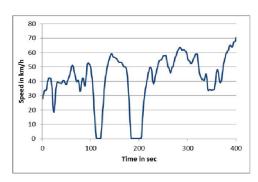

LOS 1: Free flow


LOS 2: Heavy

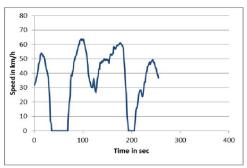

LOS 3: Saturated

LOS 4: Stop+go 1

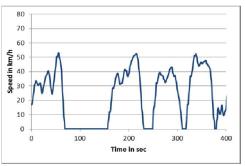
LOS 5: Stop+go 2

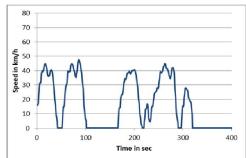


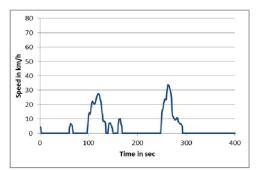
Selection of Chinese specific traffic situations - *Major Arterial*


Key parameters:

	Average speed	RPA	% stop time
	km/h	m/s3	%
LOS 1	49.8	0.17	5%
LOS 2	34.8	0.20	18%
LOS 3	24.2	0.20	28%
LOS 4	17.6	0.23	40%
LOS 5	8.4	0.21	62%

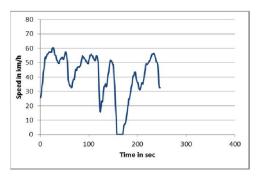

LOS 1: Free flow


LOS 2: Heavy

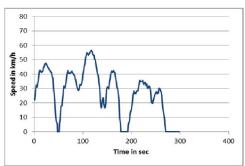

LOS 3: Saturated

LOS 4: Stop+go 1

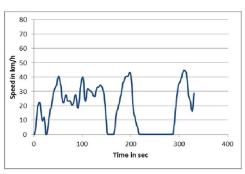
LOS 5: Stop+go 2

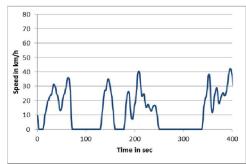


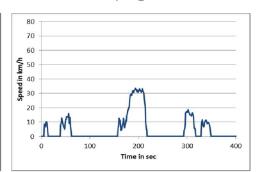
Selection of Chinese specific traffic situations - *Minor Arterial*


Key parameters:

	Average speed	RPA	% stop time
	km/h	m/s3	%
LOS 1	41.0	0.19	5%
LOS 2	27.3	0.18	16%
LOS 3	18.8	0.19	27%
LOS 4	12.5	0.23	43%
LOS 5	5.3	0.20	65%

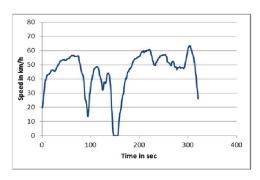

LOS 1: Free flow


LOS 2: Heavy

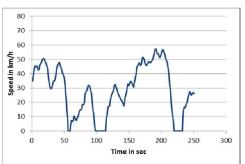

LOS 3: Saturated

LOS 4: Stop+go 1

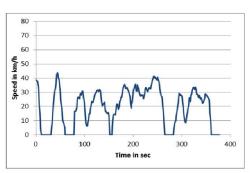
LOS 5: Stop+go 2

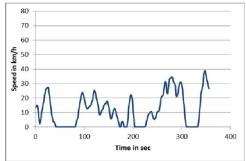


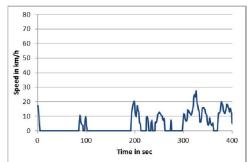
Selection of Chinese specific traffic situations -Branch


Key parameters:

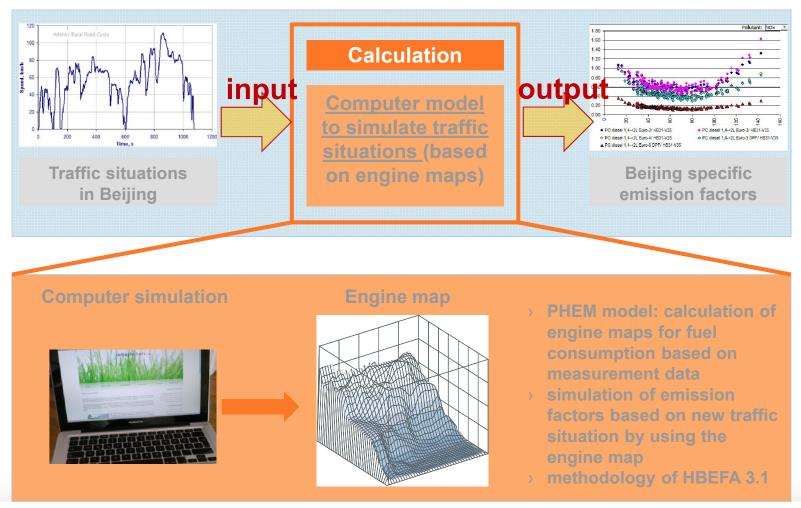
	Average speed	RPA	% stop time
	km/h	m/s3	%
LOS 1	45.7	0.12	3%
LOS 2	28.5	0.20	14%
LOS 3	19.6	0.19	21%
LOS 4	11.9	0.19	27%
LOS 5	4.5	0.18	60%


LOS 1: Free flow

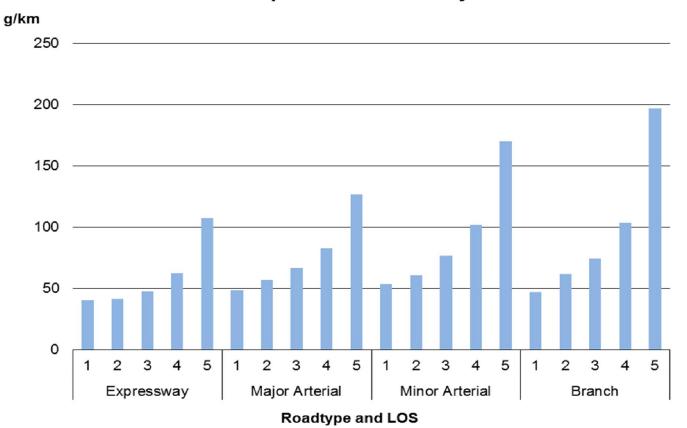

LOS 2: Heavy

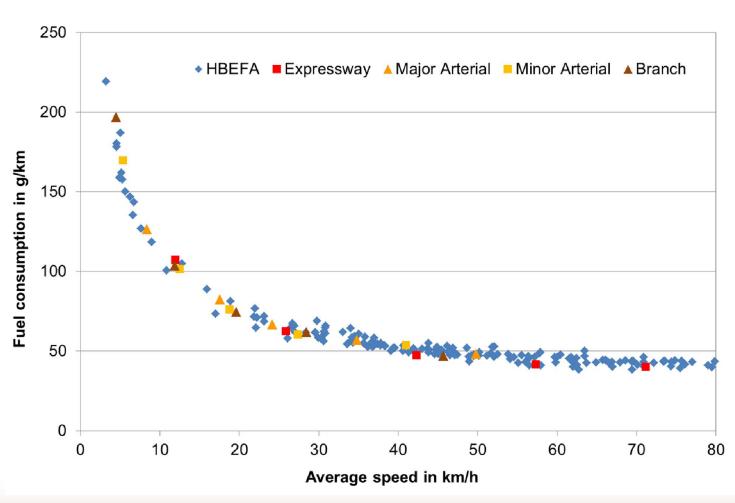

LOS 3: Saturated

LOS 4: Stop+go 1


LOS 5: Stop+go 2

生成本地化的排放因子Generate localized emission factors



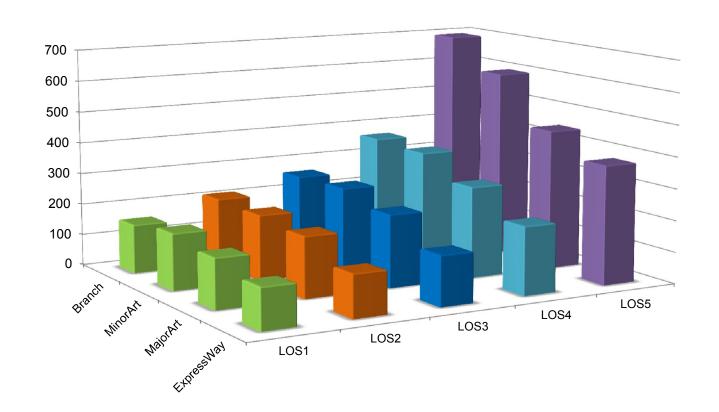

Fuel consumption of gasoline fueled passenger cars (Euro 3) for the Chinese traffic situations

Fuel consumption of selected cycles

Fuel consumption of gasoline fueled passenger cars (2002): Chinese and HBEFA traffic situations

NOx emissions of gasoline fueled passenger cars (Euro 3) for the Chinese traffic situations

NOx emissions of selected cycles



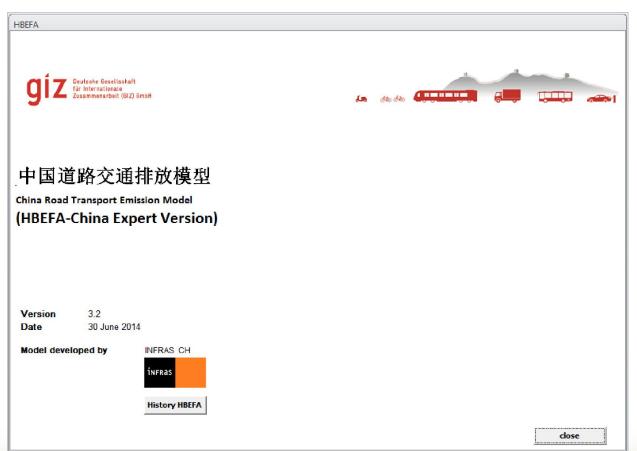
二氧化碳排放因子

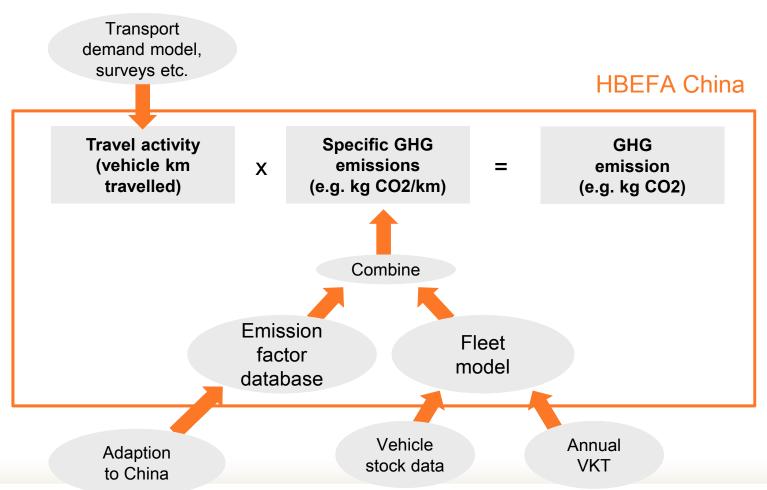
欧四 1.6排量的车不同工况CO2排放强度(克/公里)

大纲Outline

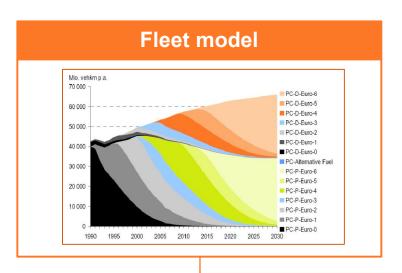
■ 背景 Background information for adaption of emission factors

■ HBEFA本地化技术思路 Approach to adapt HBEFA to China

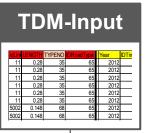

■ 交通排放计算工具 Emission quantification tool - software package

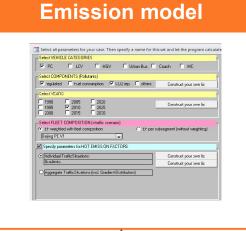

China Road Transport Emission Model

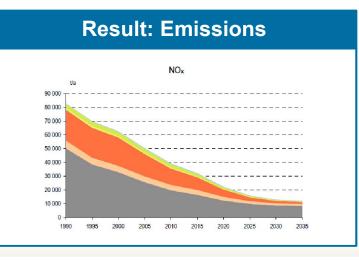
交通排放计算工具



HBEFA Expert Version and interfaces to other external data sources

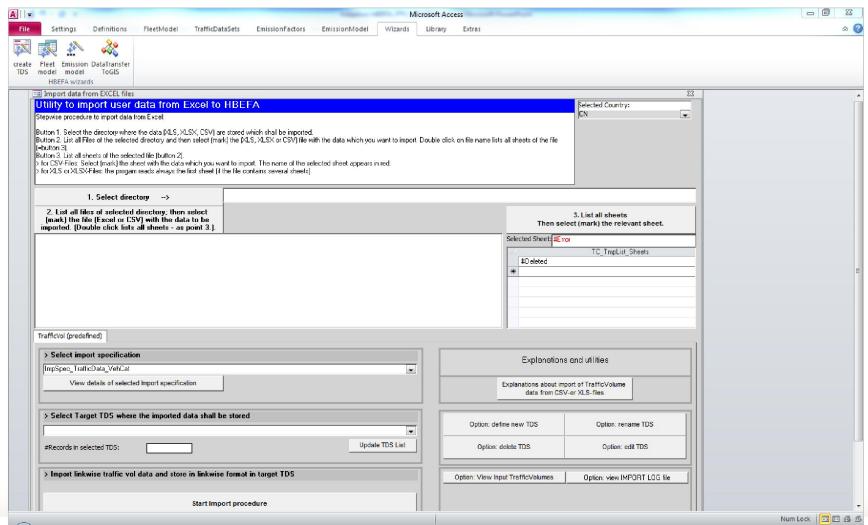



Overview of HBEFA – modules/sub-models



Emission factor database

Veh Sub-	Size	Concept	KM	weight	Spee	d per Sub:	Segm.	EFA	per SubSi	egm.
Segment			Odometer	eter [%]	Avg.	Load-0%	.oad-0% 100%		Load-0%	100%
					km/h	km/h	km/h	g/km	g/km	g∕kn.
PC petrol < 1,4L <ece< td=""><td><1,4L</td><td>PC P China-0</td><td>50'000</td><td>100.0%</td><td>71.2</td><td></td><td></td><td>11.480</td><td></td><td></td></ece<>	<1,4L	PC P China-0	50'000	100.0%	71.2			11.480		
PC petrol <1,4L ECE-15'00	<1,4L	PC P China-0	50'000	100.0%	71.2			11.480		
PC petrol <1,4L ECE-15'01/02	<1,4L	PC P China-0	50'000	100.0%	71.2			11.480		
PC petrol <1,4L ECE-15'03	<1,4L	PC P China-0	50'000	100.0%	71.2			11.480		
PC petrol < 1,4L ECE-15'04	<1,4L	PC P China-0	50'000	100.0%	71.2			8.252		
PC petrol <1.4L AGV82 (CH)	<1,4L	PC P China-0	50'000	100.0%	71.2			3.954		
PC petrol <1,4L conv other con	<1,4L	PC P China-0	50'000	100.0%	71.2			3.954		
PC petrol <1,4L Ucat	<1,4L	PC P China-0	50'000	100.0%	71.2			5.347		
PC petrol <1,4L PreChina 3WC	<1,4L	PC P China-0	50'000	100.0%	71.2			0.646		
PC petrol < 1.4L PreChina 3WC	<1,4L	PC P China-0	50'000	100.0%	71.2			0.644		
PC petrol <1,4L China-1	<1,4L	PC P China-1	50'000	100.0%	71.2			0.644		
PC petrol < 1,4L China-2	<1,4L	PC P China-2	50'000	100.0%	71.2			0.283		
PC petrol < 1,4L China-3	<1,4L	PC P China-3	50'000	100.0%	71.2			0.262		
PC petrol <1,4L China-4	<1,4L	PC P China-4	50'000	100.0%	71.2			0.168		
PC petrol <1,4L China-5	<1,4L	PC P China-5	50'000	100.0%	71.2			0.201		
PC petrol < 1,4L China-6	<1,4L	PC P China-6	50'000	100.0%	71.2			0.192		



Interface 排放模型软件界面

Page 31

谢谢! Thank you very much for your attention!

Sun Shengyang 孙胜阳 Project Manager

GIZ China - Sustainable Transport in China contact: shengyang.sun@giz.de

可持续交通在中国 SUSTAINABLE TRANSPORT IN CHINA

